Fréquence de résonance - facteur de qualité
Nous avons
étudié au chapitre précédent la résonance dans les circuits série et // sans
toutefois quantifier cela. De plus nous nous sommes placés dans un monde imaginaire et
merveilleux où les pertes et les facteurs parasites n'existaient pas. Hélas, la vie
n'est pas ainsi faite et nous allons revenir à la réalité. Dans ce chapitre, nous allons déterminer la fréquence de résonance d'un circuit et son facteur de qualité Q. |
|||||||||||||||||||||||||||||||
Nous avions pris l'habitude de
raisonner en alternatif comme en continu à propos des composants. En continu une
résistance est une résistance, il n' y a rien de mystérieux. En alternatif une
résistance n'est pas seulement une résistance, cela peut aussi devenir une self non
négligeable quand la fréquence croît et en même temps une capacité. Un condensateur
peut s'avérer selfique et une inductance n'est jamais pure car elle est aussi résistive.
Plus ennuyeux une self possède une capacité plus ou moins répartie entre spires. Bref, les choses ne sont pas aussi simples qu'il y paraît. Autre phénomène lié à l'alternatif, l'effet de peau (skin effect). En continu le courant circule dans tout le corps des conducteurs, en alternatif le courant ne circule que sur la périphérie des conducteurs. De ce fait la résistance ohmique de ces conducteurs n'est pas constante mais croît avec la fréquence. |
|||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||
le condensateur réel | L'inductance réelle | ||||||||||||||||||||||||||||||
La fréquence maximale d'utilisation d'un tel condensateur est limitée par l'inductance série LS qui peut annuler la réactance capacitive CP et/ou résonner avec CP | CP est la capacité parasite distribuée entre spires, RS la résistance série, RP est la résistance distribuée le long de la bobine. Aux basses fréquence notre self est fortement capacitive | ||||||||||||||||||||||||||||||
Dans ce qui suivra, nous considérons tout ceci sous la forme d'une seule et unique résistance qui prendra en compte toutes les résistance parasites | |||||||||||||||||||||||||||||||
Reprenons notre
circuit série :
|
|||||||||||||||||||||||||||||||
Nous voici face à notre
classique circuit série. Ici c'est la fréquence du générateur qui est variable et nous
allons la faire varier de 5 à 85 MHz. A chaque fois nous calculerons les réactances du condensateur, de la self ce qui nous permettra de calculer l'impédance du circuit. Z et U connues, nous calculerons I et la tension aux bornes de L et C. OK ? |
|||||||||||||||||||||||||||||||
Valeurs
des éléments du circuit: L= 1 µH C = 10 pF R = 50 W f = variable de 5 à 85 MHz U = 100 V |
|||||||||||||||||||||||||||||||
|
Utilisez la feuille de calcul
Excel pour effectuer ces calculs. Bon maintenant que nous avons ces données, calculons les tensions aux bornes de R, C et L en appliquant simplement la loi d'Ohm qui dit que U= ZI, U= Xc.I et U= Xl.I |
||||||||||||||||||||||||||||||
|
Nous constatons que notre
circuit résonne sur 50.3 MHz quand les réactances Xl=Xc, rien de nouveau. Nous constatons également que la tension est très importante, à la résonance, aux bornes de L et C. Pouvons nous interpréter cela ? |
||||||||||||||||||||||||||||||
Tout se passe comme
si nous avions un coefficient multiplicateur de la tension fournie par le
générateur. Poursuivons dans cette voie: A la résonance nous avons aux bornes de L et de C une tension de 632 V. Notre générateur alimente le montage sous une tension de 100V. Faisons le ratio, il vient 632 ratio1 = _____ = 6.32 100 Si nous observons attentivement nos chiffres dans les tableaux ci-dessus et que nous fassions le même ration mais pour la self et la résistance nous trouvons : 316 ratio2= _______ = 6.32 50 Bingo ! Nous mettons en évidence un coefficient multiplicateur qui se manifeste à la résonance. Ce coefficient est connu sous le nom de coefficient de qualité du circuit, on l'appelle également le Q du circuit. |
|||||||||||||||||||||||||||||||
Quantification de Q pour un circuit SERIE | XL |
||||||||||||||||||||||||||||||
avec Xl et R en W Grandeur sans unité |
|||||||||||||||||||||||||||||||
Quantification de Q pour un circuit PARALLELE |
R |
||||||||||||||||||||||||||||||
On constate que c'est l'inverse d'un circuit. A la résonance Xl = Xc, on prendra pour la calcul indifféremment l'une ou l'autre | |||||||||||||||||||||||||||||||
![]() |
Voici l'allure de la courbe du
courant dans notre circuit. Les points de mesure ne sont pas nombreux ce qui explique ce
tracé un peu taillé à coups de serpe. Nous savons que le courant est limité, pour le circuit série, par la résistance globale du circuit (parasite + ohmique). Dans notre cas nous l'avons évaluée à 50 W. Si nous avions eu seulement 25 W de résistance l'allure de la courbe eut été différente |
||||||||||||||||||||||||||||||
![]() |
Voici la nouvelle courbe avec
une résistance globale de 25 W. On constate : 1 - Que le courant est bcp plus important (rapport des résistances) 2- Que la courbe est bcp plus raide (en rose la précédente) |
||||||||||||||||||||||||||||||
Ceci va nous amener
vers un nouveau concept qui est la bande passante. (entre parenthèses, vous en entendez bcp parler, vous qui êtes internaute, sachez qu'il serait préférable de parler de débit de connexion que de bande passante...) |
|||||||||||||||||||||||||||||||
Définition : |
|||||||||||||||||||||||||||||||
La bande passante sera l'écart de fréquence compris entre les deux points ou le maximum de tension diminue de 3dB | Nous n'avons pas défini le décibel, retenez pour le moment que 3 dB correspondent à une chute de l'amplitude de 3/10. | ||||||||||||||||||||||||||||||
Voyons cela en images | |||||||||||||||||||||||||||||||
Nous reconnaissons notre courbe
de courant du circuit série résonant à 50 MHz. En bleu la courbe avec un Q de 12.64 En rose la courbe avec un Q de 6.32. Nous avons tracé les points ou l'amplitude chute de 3 dB et projeté ces points sur l'axe des fréquences. Nous remarquons que le circuit qui possède le Q le plus élevé est celui qui a la bande passante la plus faible, donc celui qui est le plus sélectif. La sélectivité sera souvent recherchée dans nos circuits. |
|||||||||||||||||||||||||||||||
Nous écrirons que la bande passante est égale au quotient de la fréquence de résonance par le coefficient de qualité du circuit |
f0 B = __________ Q |
||||||||||||||||||||||||||||||
Avec B en MHz F0 en MHz Q grandeur sans unité |
|||||||||||||||||||||||||||||||
Cette notion de sélectivité des circuit est importante, dans nos montages nous aurons soit besoin de beaucoup de sélectivité, ce qui impliquera des circuits à fort Q, soit au contraire des systèmes à large bande demandant des coefficients de qualité bas. | |||||||||||||||||||||||||||||||
Nos
circuits résonnent, nous le mesurons, nous le constatons mais sur quelle fréquence ?
|
|||||||||||||||||||||||||||||||
Nous avons déjà dit que la condition de résonance était liée, que ce soit pour les circuits série ou parallèle à l'annulation mutuelle des réactance. Ceci ne signifie pas qu'il n'y ai pas de réactance, bien au contraire, cela veut dire les ces réactances sont égales et opposées. | en termes
mathématiques : 1 Lw = ____ Cw |
||||||||||||||||||||||||||||||
Réécrivons notre équation
comme suit : Ce sera la condition de résonance |
LC w2 = 1 |
||||||||||||||||||||||||||||||
Sachant que w = 2 p f nous pouvons écrire : LC 4 p2 f 2 = 1 ou encore 1 f 2 = ___________ LC 4 p2 extrayons la racine pour obtenir f et nous obtenons: |
|||||||||||||||||||||||||||||||
Cette formule est plus connue sous le nom de formule de Thomson et vous démontre que la fréquence de résonance d'un circuit LC dépend hormis la constante 2p de la valeur de la self et du condensateur. | |||||||||||||||||||||||||||||||
Approche
pratique du calcul de la fréquence de résonance |
|||||||||||||||||||||||||||||||
La
formule ci-dessus n'est pas forcément très commode à manipuler avec son
inverse et sa racine. En y regardant bien, on voit que 1/2 p
est une constante et que nous pouvons modifier la formule pour la rendre
plus pratique, plus particulièrement dans le cadre d'un examen. Nous
pouvons également utiliser un coefficient multiplicateur de manière à
n'utiliser que des unités courantes comme le pF, le µH et le MHz. Tout
ce conduit à retenir : |
C L f 2 = 25330 |
||||||||||||||||||||||||||||||
Nous venons de voir un des phénomènes les plus exploités en radioélectricité. Retenez bien la formule pratique qui vous évietra le jour "J" de grandes opérations sur votre calculette.+ |
Retour vers la page d'accueil du traité |
Retour vers la page d'accueil du site F6CRP |
Conception-réalisation : Denis Auquebon F6CRP |
Révision 01 du 07/02/2001 |