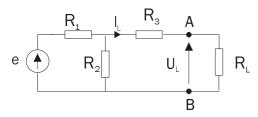


Q.C.M Electricité Q.C.M Electricité

Génaël VALET

Ce questionnaire à choix multiples est un complément utile pour consolider les bases du cours d'électricité. Les questions abordent les mêmes notions (Résistances, capacités, Loi des nœuds, loi des mailles, Thévenin et Norton et Millman.

Il n'est pas indispensable de traiter les questions dans l'ordre étant donné que la difficulté des exercices n'est pas croissante.


Les réponses seront fournies ultérieurement par un formateur.

Bon courage !!!

CENTRE DE FORMATION INDIVIDUALISE DU GITA

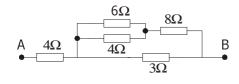
Thévenin, Norton, résistances, capacités

Question 1

 R_1 =1 $K\Omega$, R_2 =1,5 $K\Omega$, R_3 =820 Ω , e=5V et R_L =600 Ω

Dans le montage suivant, les valeurs de U_L et I_L sont :

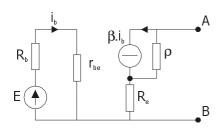
- a) **Q** 0,89V et 2,13mA
- b) 1,2V et 1,48mA
- c) 0,89V et 1,48mA


Question 2

On place un générateur de tension de résistance R=60 Ω et de tension U=12V que l'on relie à une charge R $_{L}$ de 50 Ω par l'intermédiaire d'un long fil de cuivre d'un diamètre de 0.5mm et d'une longueur de 500m.

La tension aux bornes de la charge est de :

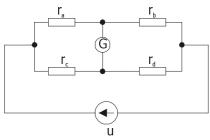
- a) 4,74V
- b) 🗖 3,98V
- c) 🗖 2,76V


Question 3

La résistance équivalente aux points A et B est :

- a) **□** 6,33 Ω
- b) **□** 7,22 **Ω**
- c) 🚨 25 Ω

Question 4



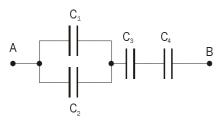
Ce montage est équivalent aux points A et B, à un modèle de Thévenin (E_{th} et R_{th}).

a)
$$\square$$
 $e_{\mathit{TH}} = -rac{R_e +
ho}{R_e +
ho + r_{\!\scriptscriptstyle RE}} \cdot E$ et $R_{\mathit{TH}} =
ho$

c)
$$\Box$$
 $e_{TH} = -\frac{\rho \cdot \beta}{R_e + r_{BE}} \cdot E$ et $R_{TH} = \rho + R_e + R_b$

Question 5

Montage en pont de Wheatstone

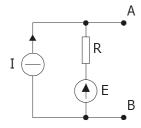

A quelle condition sur les résistances, le courant dans l'ampèremètre est-il nul?

a)
$$\Box \frac{r_a}{r_d} = \frac{r_c}{r_b}$$

b)
$$\Box r_a + r_c = r_b + r_d$$

c)
$$\Box \frac{r_a}{r_b} = \frac{r_c}{r_d}$$

Question 6

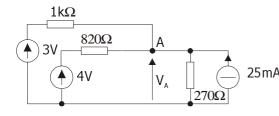

$$C_{eq} = \frac{C_1 \cdot C_2}{C_2 + C_4}$$

Quel est la valeur de la capacité équivalente aux pts A et B :

a)
$$\Box C_{eq} = \frac{C_3 \cdot C_4 \cdot (C_1 + C_2)}{C_4 \cdot (C_1 + C_2 + C_3) + C_3 \cdot (C_1 + C_2)}$$

b)
$$\Box C_{eq} = \frac{C_1 \cdot C_2}{C_1 + C_2} + C_3 + C_4$$

Question 7


Les expressions ETH et RTH du modèle équivalent de Thévenin sont :

a)
$$\Box$$
 $E_{\mathit{TH}} = R \cdot I + E$ et $R_{\mathit{TH}} = R$

b)
$$\Box$$
 $E_{\mathit{TH}} = I + E$ et $R_{\mathit{TH}} = R$

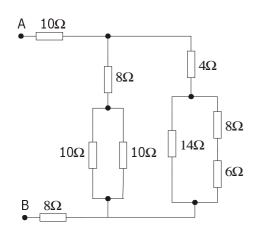
c)
$$\Box E_{TH} = E$$
 et $R_{TH} = R$

Question 8

La valeur de VA est:

- □ 6,54V
- □ 4,14V

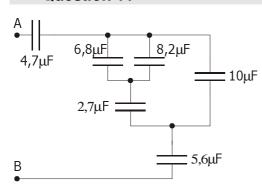
Question 9


Un condensateur plan a les caractéristiques suivantes :

- le diélectrique est le mica
- La section d'une armature est S=15 dm²
- Les armatures sont séparées d'une distance de e=0,2 mm

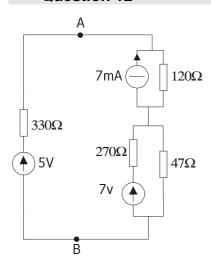
Quelle est la capacité de ce condensateur?

- a) 🛚 47nF
- b) **Δ** 68μF
- c) 53nF


Question 10

La résistance équivalente de ce montage est :

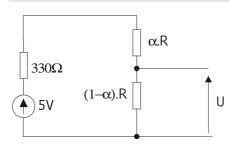
- a) \square 23,96 Ω
- b) \Box 47,32 Ω
- c) \square 14,85 Ω


Question 11

La capacité équivalente de ce montage est :

- a) \Box 16,40 μ F
- b) 🗖 168,8 nF
- c) **1**,47 μF

Question 12



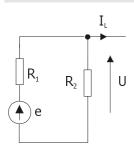
Le modèle équivalent de Thévenin au point A et B du montage suivant est :

- a) \square E_{th} # 4,8v et R_{TH} # 251 Ω
- b) \Box E_{th} # 7,4v et R_{TH} # 54 Ω
- c) \Box E_{th} # 2,9v et R_{TH} # 108 Ω

signifie à peu près égal

Question 13

Quelle doit être la valeur de α pour que U=1,5V sachant que R=270 Ω


a) $\square \frac{1}{2}$ b) $\square \frac{1}{3}$ c) $\square \frac{2}{5}$

Question 14

2 piles de 9v dont la résistance de sortie est 15Ω sont branchées en parallèle sur une résistance de 130Ω . Quelle est la tension aux bornes de cette résistance ?

- a) 🗖 6,3v
- b) 🗖 9v
- c) 🗖 8,5v

Question 15

La tension U est égale à $U=\frac{R_2}{R_1+R_2}\cdot e$:

Vrai:□ ou Faux:□